If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5q^2+5q+3=0
a = 0.5; b = 5; c = +3;
Δ = b2-4ac
Δ = 52-4·0.5·3
Δ = 19
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{19}}{2*0.5}=\frac{-5-\sqrt{19}}{1} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{19}}{2*0.5}=\frac{-5+\sqrt{19}}{1} $
| 0,5q^2-5q+3=0 | | 4z+4+5z+23=180 | | -1+-3s=11 | | 5x+8=3+38 | | 3x-12/4=4x-4 | | 1/4(p-7)=1/3(p+5) | | 5(2x-8)+-2=5(x-3)+3 | | 5(9x-1)=23 | | x^2-2x-5=-5x+5 | | 3(2x-9)=30 | | 225x+225Y+185Z=6575 | | 2n+10=4n+4 | | 2(x-3=30 | | 20=-10+3x | | 6p+5=2p+6 | | 2-5x=7-x | | -2x+-3=-320 | | 12-5x=34x | | 225x+225Y+185Z=28110 | | s-$5=$25.52 | | 2n+101/2=4n+41/2 | | 59+v-12=47 | | n/5=-13 | | 19x=40 | | 21/4x+1/2=44 | | x-5/x+8=2/7 | | 5.6a+15=71 | | 2/z+22=5/z-2 | | 3(2r-1)=2(5-r) | | 1/4d=52 | | -3x+2(x+4)=0 | | 10w+7=37 |